Publikationen
2018
- Rothe, A., Deverett, B., Mayrhofer, R. & Kemp, C. (2018). Successful structure learning from observational data. Cognition, 179, 266-297.
- Stephan, S., Mayrhofer, R. & Waldmann, M. (2018). Assessing singular causation: The role of causal latencies. In T.T. Rogers, M. Rau, X. Zhu, & C. W. Kalish (Eds.), (pp. 1080-1085). : Cognitive Science Society.
2017
- Bramley, N., Mayrhofer, R., Gerstenberg, T. & Lagnado, D. (2017). Causal learning from interventions and dynamics in continuous time. In G. Gunzelmann, A. Howes, T. Tenbrink, & E. Davelaar (Eds.), (pp. 150-155). : Cognitive Science Society.
- Meder, B. & Mayrhofer, R. (2017). Diagnostic reasoning. In M. R. Waldmann (Ed.), (pp. 433-458). : Oxford University Press.
- Meder, B. & Mayrhofer, R. (2017). Diagnostic causal reasoning with verbal information. Cognitive Psychology, 96, 54-84. https://dx.doi.org/10.1016/j.cogpsych.2017.05.002, ISSN: 0010-0285.
2016
- Mayrhofer, R. & Waldmann, M. (2016). Sufficiency and necessity assumptions in causal structure induction. Cognitive Science, 40(8), 2137-2150. https://dx.doi.org/10.1111/cogs.12318, ISSN: 0364-0213.
- Mayrhofer, R. & Waldmann, M. (2016). Causal agency and the perception of force. Psychonomic Bulletin & Review, 23(3), 789-796. https://dx.doi.org/10.3758/s13423-015-0960-y, ISSN: 1069-9384.
- Waldmann, M. R. & Mayrhofer, R. (2016). Hybrid causal representations. In B. Ross (Ed.), The Psychology of Learning and Motivation. (pp. 85-127). New York: Academic Press. ISBN: 978-0-12-804790-3.
2015
2014
- Mayrhofer, R. & Waldmann, M. (2014). Indicators of causal agency in physical interactions: The role of the prior context. Cognition, 132(3), 485-490. https://dx.doi.org/10.1016/j.cognition.2014.05.013, ISSN: 0010-0277.
- Meder, B., Mayrhofer, R. & Waldmann, M. (2014). Structure induction in diagnostic causal reasoning. Psychological Review, 121(3), 277-301. https://dx.doi.org/10.1037/a0035944, ISSN: 0033-295X.
- Neth, H., Engelmann, N. & Mayrhofer, R. (2014). Foraging for alternatives: Ecological rationality in keeping options viable. (). : .
2013
- Hagmayer, Y. & Mayrhofer, R. (2013). Hierarchical Bayesian models as formal models of causal reasoning. Argument & Computation, 4, 36-45.
- Mayrhofer, R. & Waldmann, M. R. (2013). Agency intuitions in physical interactions. In M. Knauff, M. Pauen, N. Sebanz, & I. Wachsmuth (Eds.), Proceedings of the 35th Annual Conference of the Cognitive Science Society. (pp. 996-1001). Austin, TX: Cognitive Science Society. ISBN: 978-0-97-683189-1.
- Meder, B. & Mayrhofer, R. (2013). Sequential diagnostic reasoning with verbal information. In M. Knauff, M. Pauen, N. Sebanz, & I. Wachsmuth (Eds.), (pp. 1014-1019). : Cognitive Science Society.
2010
- Mayrhofer, R., Hagmayer, Y. & Waldmann, M. (2010). Agents and causes: A Bayesian error attribution model of causal reasoning. In S. Ohlsson & R. Catrambone (Eds.), (pp. 925-930). : Cognitive Science Society.
- Mayrhofer, R., Nagel, J. & Waldmann, M. (2010). The role of causal schemas in inductive reasoning. In S. Ohlsson & R. Catrambone (Eds.), (pp. 1082-1087). : Cognitive Science Society.
2009
- Griffiths, O., Mayrhofer, R., Nagel, J. & Waldmann, M. R. (2009). Causal schema-based inductive reasoning. In N. Taatgen, H. van Rijn, L. Schomaker & J. Nerbonne (Eds.), Do Voters Use Episodic Knowledge to Rely on Recognition?. (pp. 691-696). Austin, TX: Cognitive Science Society. ISBN: 978-0-9768318-5-3.
- Mayrhofer, R. (2009). Kausales Denken, Bayes-Netze und die Markov-Bedingung.
- Meder, B., Mayrhofer, R. & Waldmann, M. R. (2009). A rational model of elemental diagnostic inference. In N. Taatgen, H. van Rijn, L. Schomaker & J. Nerbonne (Eds.), Proceedings of the 31st Annual Conference of the Cognitive Science Society. (pp. 2176-2181). Austin, TX: Cognitive Science Society. ISBN: 978-0-9768318-5-3.
2008
- Mayrhofer, R., Goodman, N. D., Waldmann, M. R. & Tenenbaum, J. B. (2008). Structured correlation from the causal background (PSYNDEXshort). In B. C. Love, K. McRae, & V. M. Sloutsky (Eds.), Proceedings of the 30th Annual Conference of the Cognitive Science Society. (pp. 303-308). Austin, TX: Cognitive Science Society. ISBN: 978-0-9768318-4-6.