KIAA0319 promoter DNA methylation predicts dichotic listening performance in forced-attention conditions
KIAA0319 promoter DNA methylation predicts dichotic listening performance in forced-attention conditionsLanguage lateralization is one of the most prominent examples of functional hemispheric asymmetries. Previous studies indicate a significant contribution of factors not related to DNA sequence variation on the development of language lateralization, but the molecular processes underlying this relation are unclear. The Brandler-Paracchini model of hemispheric asymmetries assumes that genes involved in the establishment of ciliogenesis and bodily asymmetries also affect functional hemispheric asymmetries. Thus, genes implicated in this model represent a key target for epigenetic modulation of language lateralization. Here, we analyzed DNA methylation in the KIAA0319 (a gene involved in dyslexia and ciliogenesis) promoter region to investigate whether epigenetic markers of language lateralization can be identified in non-neuronal tissue. We found sex-specific effects of DNA methylation in single CpG sites on language lateralization in the forced-left (FL) and the forced-right (FR), but not on language lateralization in the non-forced (NF) condition of the dichotic listening task. These findings suggest that DNA methylation patterns in the KIAA0319 promoter region might be associated with cognitive control processes that are necessary to perform well in the forced-attention conditions. Furthermore, the assumption of an association between genes involved in ciliogenesis and the ontogenesis of functional hemispheric asymmetries is supported.https://www.psych.uni-goettingen.de/de/biopers/publications_department/schmitz-et-al-2018https://www.psych.uni-goettingen.de/@@site-logo/university-of-goettingen-logo.svg
J Schmitz, R Kumsta, D Moser, O Güntürkün and S Ocklenburg
KIAA0319 promoter DNA methylation predicts dichotic listening performance in forced-attention conditions
Behavioural Brain Research
Language lateralization is one of the most prominent examples of functional hemispheric asymmetries. Previous studies indicate a significant contribution of factors not related to DNA sequence variation on the development of language lateralization, but the molecular processes underlying this relation are unclear. The Brandler-Paracchini model of hemispheric asymmetries assumes that genes involved in the establishment of ciliogenesis and bodily asymmetries also affect functional hemispheric asymmetries. Thus, genes implicated in this model represent a key target for epigenetic modulation of language lateralization. Here, we analyzed DNA methylation in the KIAA0319 (a gene involved in dyslexia and ciliogenesis) promoter region to investigate whether epigenetic markers of language lateralization can be identified in non-neuronal tissue. We found sex-specific effects of DNA methylation in single CpG sites on language lateralization in the forced-left (FL) and the forced-right (FR), but not on language lateralization in the non-forced (NF) condition of the dichotic listening task. These findings suggest that DNA methylation patterns in the KIAA0319 promoter region might be associated with cognitive control processes that are necessary to perform well in the forced-attention conditions. Furthermore, the assumption of an association between genes involved in ciliogenesis and the ontogenesis of functional hemispheric asymmetries is supported.